
11
Limited dependent variable models

Learning Outcomes

In this chapter, you will learn how to

● Compare between different types of limited dependent
variables and select the appropriate model

● Interpret and evaluate logit and probit models

● Distinguish between the binomial and multinomial cases

● Deal appropriately with censored and truncated dependent
variables

● Estimate limited dependent variable models using maximum
likelihood in EViews

11.1 Introduction and motivation

Chapters 4 and 9 have shown various uses of dummy variables to numer-

ically capture the information qualitative variables -- for example, day-of-

the-week effects, gender, credit ratings, etc. When a dummy is used as

an explanatory variable in a regression model, this usually does not give

rise to any particular problems (so long as one is careful to avoid the

dummy variable trap -- see chapter 9). However, there are many situations

in financial research where it is the explained variable, rather than one

or more of the explanatory variables, that is qualitative. The qualitative

information would then be coded as a dummy variable and the situation

would be referred to as a limited dependent variable and needs to be treated

differently. The term refers to any problem where the values that the de-

pendent variables may take are limited to certain integers (e.g. 0, 1, 2, 3, 4)

or even where it is a binary number (only 0 or 1). There are numerous
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512 Introductory Econometrics for Finance

examples of instances where this may arise, for example where we want

to model:

● Why firms choose to list their shares on the NASDAQ rather than the

NYSE

● Why some stocks pay dividends while others do not

● What factors affect whether countries default on their sovereign debt

● Why some firms choose to issue new stock to finance an expansion

while others issue bonds

● Why some firms choose to engage in stock splits while others do not.

It is fairly easy to see in all these cases that the appropriate form for the

dependent variable would be a 0--1 dummy variable since there are only

two possible outcomes. There are, of course, also situations where it would

be more useful to allow the dependent variable to take on other values,

but these will be considered later in section 11.9. We will first examine

a simple and obvious, but unfortunately flawed, method for dealing with

binary dependent variables, known as the linear probability model.

11.2 The linear probability model

The linear probability model (LPM) is by far the simplest way of dealing

with binary dependent variables, and it is based on an assumption that

the probability of an event occurring, Pi , is linearly related to a set of

explanatory variables x2i , x3i , . . . , xki

Pi = p(yi = 1) = β1 + β2x2i + β3x3i + · · · + βk xki + ui , i = 1, . . . , N

(11.1)

The actual probabilities cannot be observed, so we would estimate a model

where the outcomes, yi (the series of zeros and ones), would be the de-

pendent variable. This is then a linear regression model and would be

estimated by OLS. The set of explanatory variables could include either

quantitative variables or dummies or both. The fitted values from this

regression are the estimated probabilities for yi = 1 for each observation

i . The slope estimates for the linear probability model can be interpreted

as the change in the probability that the dependent variable will equal 1

for a one-unit change in a given explanatory variable, holding the effect

of all other explanatory variables fixed. Suppose, for example, that we

wanted to model the probability that a firm i will pay a dividend (yi = 1)

as a function of its market capitalisation (x2i , measured in millions of US
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ŷi = −0.3 + 0.012xi
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The fatal flaw of the

linear probability

model

dollars), and we fit the following line:

P̂i = −0.3 + 0.012x2i (11.2)

where P̂i denotes the fitted or estimated probability for firm i . This model

suggests that for every $1m increase in size, the probability that the firm

will pay a dividend increases by 0.012 (or 1.2%). A firm whose stock is

valued at $50m will have a −0.3 + 0.012 × 50 = 0.3 (or 30%) probability

of making a dividend payment. Graphically, this situation may be repre-

sented as in figure 11.1.

While the linear probability model is simple to estimate and intuitive

to interpret, the diagram should immediately signal a problem with this

setup. For any firm whose value is less than $25m, the model-predicted

probability of dividend payment is negative, while for any firm worth more

than $88m, the probability is greater than one. Clearly, such predictions

cannot be allowed to stand, since the probabilities should lie within the

range (0,1). An obvious solution is to truncate the probabilities at 0 or 1,

so that a probability of −0.3, say, would be set to zero, and a probability

of, say, 1.2 would be set to 1. However, there are at least two reasons why

this is still not adequate:

(1) The process of truncation will result in too many observations for

which the estimated probabilities are exactly zero or one.

(2) More importantly, it is simply not plausible to suggest that the firm’s

probability of paying a dividend is either exactly zero or exactly one.

Are we really certain that very small firms will definitely never pay

a dividend and that large firms will always make a payout? Probably

not, so a different kind of model is usually used for binary dependent
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variables -- either a logit or a probit specification. These approaches

will be discussed in the following sections. But before moving on, it

is worth noting that the LPM also suffers from a couple of more stan-

dard econometric problems that we have examined in previous chap-

ters. First, since the dependent variable takes only one or two values,

for given (fixed in repeated samples) values of the explanatory vari-

ables, the disturbance term1 will also take on only one of two values.

Consider again equation (11.1). If yi = 1, then by definition

ui = 1 − β1 − β2x2i − β3x3i − · · · − βk xki ;

but if yi = 0, then

ui = −β1 − β2x2i − β3x3i − · · · − βk xki .

Hence the error term cannot plausibly be assumed to be normally

distributed. Since ui changes systematically with the explanatory vari-

ables, the disturbances will also be heteroscedastic. It is therefore es-

sential that heteroscedasticity-robust standard errors are always used

in the context of limited dependent variable models.

11.3 The logit model

Both the logit and probit model approaches are able to overcome the

limitation of the LPM that it can produce estimated probabilities that

are negative or greater than one. They do this by using a function that

effectively transforms the regression model so that the fitted values are

bounded within the (0,1) interval. Visually, the fitted regression model will

appear as an S-shape rather than a straight line, as was the case for the

LPM. This is shown in figure 11.2.

The logistic function F , which is a function of any random variable, z,

would be

F (zi ) =
ezi

1 + ezi
=

1

1 + e−zi
(11.3)

where e is the exponential under the logit approach. The model is so called

because the function F is in fact the cumulative logistic distribution. So

the logistic model estimated would be

Pi =
1

1 + e−(β
1
+β2x2i +···+βk xki +ui )

(11.4)

where again Pi is the probability that yi = 1.

1 N.B. The discussion refers to the disturbance, ui , rather than the residual, ûi .
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The logit model

With the logistic model, 0 and 1 are asymptotes to the function and

thus the probabilities will never actually fall to exactly zero or rise to

one, although they may come infinitesimally close. In equation (11.3), as

zi tends to infinity, e−zi tends to zero and 1/(1 + e−zi ) tends to 1; as zi tends

to minus infinity, e−zi tends to infinity and 1/(1 + e−zi ) tends to 0.

Clearly, this model is not linear (and cannot be made linear by a trans-

formation) and thus is not estimable using OLS. Instead, maximum likeli-

hood is usually used -- this is discussed in section 11.7 and in more detail

in the appendix to this chapter.

11.4 Using a logit to test the pecking order hypothesis

This section examines a study of the pecking order hypothesis due to

Helwege and Liang (1996). The theory of firm financing suggests that cor-

porations should use the cheapest methods of financing their activities

first (i.e. the sources of funds that require payment of the lowest rates of

return to investors) and switch to more expensive methods only when the

cheaper sources have been exhausted. This is known as the ‘pecking order

hypothesis’, initially proposed by Myers (1984). Differences in the relative

cost of the various sources of funds are argued to arise largely from in-

formation asymmetries since the firm’s senior managers will know the

true riskiness of the business, whereas potential outside investors will

not.2 Hence, all else equal, firms will prefer internal finance and then, if

2 ‘Managers have private information regarding the value of assets in place and

investment opportunities that cannot credibly be conveyed to the market. Consequently,

any risky security offered by the firm will not be priced fairly from the manager’s point

of view’ (Helwege and Liang, p. 438).
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further (external) funding is necessary, the firm’s riskiness will determine

the type of funding sought. The more risky the firm is perceived to be,

the less accurate will be the pricing of its securities.

Helwege and Liang (1996) examine the pecking order hypothesis in the

context of a set of US firms that had been newly listed on the stock market

in 1983, with their additional funding decisions being tracked over the

1984--1992 period. Such newly listed firms are argued to experience higher

rates of growth, and are more likely to require additional external funding

than firms which have been stock market listed for many years. They are

also more likely to exhibit information asymmetries due to their lack of

a track record. The list of initial public offerings (IPOs) came from the

Securities Data Corporation and the Securities and Exchange Commission

with data obtained from Compustat.

A core objective of the paper is to determine the factors that affect the

probability of raising external financing. As such, the dependent variable

will be binary -- that is, a column of 1s (firm raises funds externally) and

0s (firm does not raise any external funds). Thus OLS would not be appro-

priate and hence a logit model is used. The explanatory variables are a set

that aims to capture the relative degree of information asymmetry and de-

gree of riskiness of the firm. If the pecking order hypothesis is supported

by the data, then firms should be more likely to raise external funding

the less internal cash they hold. Hence variable ‘deficit’ measures (capital

expenditures + acquisitions + dividends − earnings). ‘Positive deficit’ is

a variable identical to deficit but with any negative deficits (i.e. surpluses)

set to zero; ‘surplus’ is equal to the negative of deficit for firms where

deficit is negative; ‘positive deficit × operating income’ is an interaction

term where the two variables are multiplied together to capture cases

where firms have strong investment opportunities but limited access to

internal funds; ‘assets’ is used as a measure of firm size; ‘industry asset

growth’ is the average rate of growth of assets in that firm’s industry over

the 1983--1992 period; ‘firm’s growth of sales’ is the growth rate of sales

averaged over the previous 5 years; ‘previous financing’ is a dummy vari-

able equal to 1 for firms that obtained external financing in the previous

year. The results from the logit regression are presented in table 11.1.

The key variable, ‘deficit,’ has a parameter that is not statistically signif-

icant and hence the probability of obtaining external financing does not

depend on the size of a firm’s cash deficit.3 The parameter on the ‘surplus’

3 Or an alternative explanation, as with a similar result in the context of a standard

regression model, is that the probability varies widely across firms with the size of the

cash deficit so that the standard errors are large relative to the point estimate.
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Table 11.1 Logit estimation of the probability of external financing

Variable (1) (2) (3)

Intercept −0.29 −0.72 −0.15
(−3.42) (−7.05) (−1.58)

Deficit 0.04 0.02
(0.34) (0.18)

Positive deficit −0.24
(−1.19)

Surplus −2.06
(−3.23)

Positive deficit × operating income −0.03
(−0.59)

Assets 0.0004 0.0003 0.0004
(1.99) (1.36) (1.99)

Industry asset growth −0.002 −0.002 −0.002
(−1.70) (−1.35) (−1.69)

Previous financing 0.79
(8.48)

Note: a blank cell implies that the particular variable was not included in that

regression; t -ratios in parentheses; only figures for all years in the sample are

presented.

Source: Helwege and Liang (1996). Reprinted with the permission of Elsevier Science.

variable has the correct negative sign, indicating that the larger a firm’s

surplus, the less likely it is to seek external financing, which provides

some limited support for the pecking order hypothesis. Larger firms (with

larger total assets) are more likely to use the capital markets, as are firms

that have already obtained external financing during the previous year.

11.5 The probit model

Instead of using the cumulative logistic function to transform the model,

the cumulative normal distribution is sometimes used instead. This gives

rise to the probit model. The function F in equation (11.3) is replaced by:

F (zi ) =
1

σ
√

2π
e
− 1

2

(

z2
i
σ

)

(11.5)

This function is the cumulative distribution function for a standard nor-

mally distributed random variable. As for the logistic approach, this

function provides a transformation to ensure that the fitted probabil-

ities will lie between zero and one. Also as for the logit model, the
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marginal impact of a unit change in an explanatory variable, x4i say,

will be given by β4 F (zi ), where β4 is the parameter attached to x4i and

zi = β1 + β2x2i + β3x3i + · · · + ui .

11.6 Choosing between the logit and probit models

For the majority of the applications, the logit and probit models will give

very similar characterisations of the data because the densities are very

similar. That is, the fitted regression plots (such as figure 11.2) will be

virtually indistinguishable and the implied relationships between the ex-

planatory variables and the probability that yi = 1 will also be very similar.

Both approaches are much preferred to the linear probability model. The

only instance where the models may give non-negligibility different re-

sults occurs when the split of the yi between 0 and 1 is very unbalanced --

for example, when yi = 1 occurs only 10% of the time.

Stock and Watson (2006) suggest that the logistic approach was tradi-

tionally preferred since the function does not require the evaluation of an

integral and thus the model parameters could be estimated faster. How-

ever, this argument is no longer relevant given the computational speeds

now achievable and the choice of one specification rather than the other

is now usually arbitrary.

11.7 Estimation of limited dependent variable models

Given that both logit and probit are non-linear models, they cannot be

estimated by OLS. While the parameters could, in principle, be estimated

using non-linear least squares (NLS), maximum likelihood (ML) is simpler

and is invariably used in practice. As discussed in chapter 8, the princi-

ple is that the parameters are chosen to jointly maximise a log-likelihood

function (LLF). The form of this LLF will depend upon whether the logit or

probit model is used, but the general principles for parameter estimation

described in chapter 8 will still apply. That is, we form the appropriate

log-likelihood function and then the software package will find the val-

ues of the parameters that jointly maximise it using an iterative search

procedure. A derivation of the ML estimator for logit and probit models

is given in the appendix to this chapter. Box 11.1 shows how to interpret

the estimated parameters from probit and logit models.

Once the model parameters have been estimated, standard errors can be

calculated and hypothesis tests conducted. While t -test statistics are con-

structed in the usual way, the standard error formulae used following the

ML estimation are valid asymptotically only. Consequently, it is common

to use the critical values from a normal distribution rather than a t
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Box 11.1 Parameter interpretation for probit and logit models

Standard errors and t-ratios will automatically be calculated by the econometric

software package used, and hypothesis tests can be conducted in the usual fashion.

However, interpretation of the coefficients needs slight care. It is tempting, but

incorrect, to state that a 1-unit increase in x2i , for example, causes a β2% increase in

the probability that the outcome corresponding to yi = 1 will be realised. This would

have been the correct interpretation for the linear probability model.

However, for logit models, this interpretation would be incorrect because the form of

the function is not Pi = βi + β2xi + ui , for example, but rather Pi = F (x2i ), where F

represents the (non-linear) logistic function. To obtain the required relationship

between changes in x2i and Pi , we would need to differentiate F with respect to x2i and

it turns out that this derivative is β2 F (x2i ). So in fact, a 1-unit increase in x2i will cause

a β2 F (x2i ) increase in probability. Usually, these impacts of incremental changes in an

explanatory variable are evaluated by setting each of them to their mean values. For

example, suppose we have estimated the following logit model with 3 explanatory

variables using maximum likelihood

P̂i =
1

1 + e−(0.1+0.3x2i −0.6x3i +0.9x4i )
(11.6)

Thus we have β̂1 = 0.1, β̂2 = 0.3, β̂3 = −0.6, β̂4 = 0.9. We now need to calculate

F (zi ), for which we need the means of the explanatory variables, where zi is defined

as before. Suppose that these are x̄2 = 1.6, x̄3 = 0.2, x̄4 = 0.1, then the estimate of

F (zi ) will be given by

P̂i =
1

1 + e−(0.1+0.3×1.6−0.6×0.2+0.9×0.1)
=

1

1 + e−0.55
= 0.63 (11.7)

Thus a 1-unit increase in x2 will cause an increase in the probability that the outcome

corresponding to yi = 1 will occur by 0.3 × 0.63 = 0.19. The corresponding changes

in probability for variables x3 and x4 are −0.6 × 0.63 = −0.38 and 0.9 × 0.63 =
0.57, respectively. These estimates are sometimes known as the marginal effects.

There is also another way of interpreting discrete choice models, known as the

random utility model. The idea is that we can view the value of y that is chosen by

individual i (either 0 or 1) as giving that person a particular level of utility, and the

choice that is made will obviously be the one that generates the highest level of utility.

This interpretation is particularly useful in the situation where the person faces a

choice between more than 2 possibilities as in section 11.9 below.

distribution with the implicit assumption that the sample size is suffi-

ciently large.

11.8 Goodness of fit measures for linear dependent variable models

While it would be possible to calculate the values of the standard goodness

of fit measures such as RSS, R2 or R̄2 for linear dependent variable models,

these cease to have any real meaning. The objective of ML is to maximise

the value of the LLF, not to minimise the RSS. Moreover, R2 and adjusted



520 Introductory Econometrics for Finance

R2, if calculated in the usual fashion, will be misleading because the fitted

values from the model can take on any value but the actual values will

be only either 0 and 1. To illustrate, suppose that we are considering a

situation where a bank either grants a loan (yi = 1) or it refuses (yi = 0).

Does, say, P̂i = 0.8 mean the loan is offered or not? In order to answer

this question, sometimes, any value of P̂i > 0.5 would be rounded up to

one and any value <0.5 rounded down to zero. However, this approach is

unlikely to work well when most of the observations on the dependent

variable are one or when most are zero. In such cases, it makes more

sense to use the unconditional probability that y = 1 (call this ȳ) as the

threshold rather than 0.5. So if, for example, only 20% of the observations

have y = 1 (so ȳ = 0.2), then we would deem the model to have correctly

predicted the outcome concerning whether the bank would grant the loan

to the customer where P̂i > 0.2 and yi = 1 and where P̂i < 0.2 and yi = 0.

Thus if yi = 1 and P̂i = 0.8, the model has effectively made the correct

prediction (either the loan is granted or refused -- we cannot have any

outcome in between), whereas R2 and R̄2 will not give it full credit for

this. Two goodness of fit measures that are commonly reported for limited

dependent variable models are as follows.

(1) The percentage of yi values correctly predicted, defined as 100 × the

number of observations predicted correctly divided by the total num-

ber of observations:

Percent correct predictions =
100

N

N
∑

i=1

yi I (P̂i ) + (1 − yi )(1 − I (P̂i ))

(11.8)

where I (ŷi ) = 1 if ŷi > ȳ and 0 otherwise.

Obviously, the higher this number, the better the fit of the model. Al-

though this measure is intuitive and easy to calculate, Kennedy (2003)

suggests that it is not ideal, since it is possible that a ‘naïve predictor’

could do better than any model if the sample is unbalanced between 0

and 1. For example, suppose that yi = 1 for 80% of the observations. A

simple rule that the prediction is always 1 is likely to outperform any

more complex model on this measure but is unlikely to be very use-

ful. Kennedy (2003, p. 267) suggests measuring goodness of fit as the

percentage of yi = 1 correctly predicted plus the percentage of yi = 0

correctly predicted. Algebraically, this can be calculated as

Percent correct predictions = 100 ×

[

∑

yi I (P̂i )
∑

yi

+
∑

(1 − yi )(1 − I (P̂i ))

N −
∑

yi

]

(11.9)
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Again, the higher the value of the measure, the better the fit of the

model.

(2) A measure known as ‘pseudo-R2’, defined as

pseudo − R2 = 1 −
LLF

LLF0

(11.10)

where LLF is the maximised value of the log-likelihood function for

the logit and probit model and LLF0 is the value of the log-likelihood

function for a restricted model where all of the slope parameters are

set to zero (i.e. the model contains only an intercept). Pseudo-R2 will

have a value of zero for the restricted model, as with the traditional

R2, but this is where the similarity ends. Since the likelihood is es-

sentially a joint probability, its value must be between zero and one,

and therefore taking its logarithm to form the LLF must result in a

negative number. Thus, as the model fit improves, LLF will become less

negative and therefore pseudo-R2 will rise. The maximum value of one

could be reached only if the model fitted perfectly (i.e. all the P̂i were

either exactly zero or one corresponding to the actual values). This

could never occur in reality and therefore pseudo-R2 has a maximum

value less than one. We also lose the simple interpretation of the stan-

dard R2 that it measures the proportion of variation in the dependent

variable that is explained by the model. Indeed, pseudo-R2 does not

have any intuitive interpretation.

This definition of pseudo-R2 is also known as McFadden’s R2, but it

is also possible to specify the metric in other ways. For example, we

could define pseudo-R2 as [1 − (RSS/TSS)] where RSS is the residual sum

of squares from the fitted model and TSS is the total sum of squares

of yi .

11.9 Multinomial linear dependent variables

All of the examples that have been considered so far in this chapter have

concerned situations where the dependent variable is modelled as a bi-

nary (0,1) choice. But there are also many instances where investors or

financial agents are faced with more alternatives. For example, a com-

pany may be considering listing on the NYSE, the NASDAQ or the AMEX

markets; a firm that is intending to take over another may choose to pay

by cash, with shares, or with a mixture of both; a retail investor may

be choosing between five different mutual funds; a credit ratings agency

could assign 1 of 16 (AAA to B3/B−) different ratings classifications to a

firm’s debt.
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Notice that the first three of these examples are different from the last

one. In the first three cases, there is no natural ordering of the alternatives:

the choice is simply made between them. In the final case, there is an

obvious ordering, because a score of 1, denoting a AAA-rated bond, is

better than a score of 2, denoting a AA1/AA+-rated bond, and so on (see

section 4.14 in chapter 4). These two situations need to be distinguished

and a different approach used in each case. In the first (when there is no

natural ordering), a multinomial logit or probit would be used, while in

the second (where there is an ordering), an ordered logit or probit would

be used. This latter situation will be discussed in the next section, while

multinomial models will be considered now.

When the alternatives are unordered, this is sometimes called a discrete

choice or multiple choice problem. The models used are derived from the

principles of utility maximisation -- that is, the agent chooses the alterna-

tive that maximises his utility relative to the others. Econometrically, this

is captured using a simple generalisation of the binary setup discussed

earlier. When there were only 2 choices (0,1), we required just one equa-

tion to capture the probability that one or the other would be chosen. If

there are now three alternatives, we would need two equations; for four

alternatives, we would need three equations. In general, if there are m

possible alternative choices, we need m − 1 equations.

The situation is best illustrated by first examining a multinomial lin-

ear probability model. This still, of course, suffers from the same limita-

tions as it did in the binary case (i.e. the same problems as the LPM), but

it nonetheless serves as a simple example by way of introduction.4 The

multiple choice example most commonly used is that of the selection

of the mode of transport for travel to work.5 Suppose that the journey

may be made by car, bus, or bicycle (3 alternatives), and suppose that

the explanatory variables are the person’s income (I ), total hours worked

(H ), their gender (G) and the distance travelled (D).6 We could set up 2

equations

BUSi = α1 + α2 Ii + α3 Hi + α4G i + α5 Di + ui (11.11)

CARi = β1 + β2 Ii + β3 Hi + β4G i + β5 Di + vi (11.12)

where BUSi = 1 if person i travels by bus and 0 otherwise; CARi = 1 if

person i travels by car and 0 otherwise.

4 Multinomial models are clearly explained with intuitive examples in Halcoussis (2005,

chapter 12).
5 This illustration is used in Greene (2002) and Kennedy (2003), for example.
6 Note that the same variables must be used for all equations for this approach to be valid.
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There is no equation for travel by bicycle and this becomes a sort of refer-

ence point, since if the dependent variables in the two equations are both

zero, the person must be travelling by bicycle.7 In fact, we do not need to

estimate the third equation (for travel by bicycle) since any quantity of in-

terest can be inferred from the other two. The fitted values from the equa-

tions can be interpreted as probabilities and so, together with the third

possibility, they must sum to unity. Thus, if, for a particular individual i ,

the probability of travelling by car is 0.4 and by bus is 0.3, then the possi-

bility that she will travel by bicycle must be 0.3 (1−0.4−0.3). Also, the inter-

cepts for the three equations (the two estimated equations plus the miss-

ing one) must sum to zero across the three modes of transport.

While the fitted probabilities will always sum to unity by construction,

as with the binomial case, there is no guarantee that they will all lie

between 0 and 1 -- it is possible that one or more will be greater than 1

and one or more will be negative. In order to make a prediction about

which mode of transport a particular individual will use, given that the

parameters in equations (11.11) and (11.12) have been estimated and given

the values of the explanatory variables for that individual, the largest

fitted probability would be set to 1 and the others set to 0. So, for example,

if the estimated probabilities of a particular individual travelling by car,

bus and bicycle are 1.1, 0.2 and −0.3, these probabilities would be rounded

to 1, 0, and 0. So the model would predict that this person would travel

to work by car.

Exactly as the LPM has some important limitations that make logit and

probit the preferred models, in the multiple choice context multinomial

logit and probit models should be used. These are direct generalisations of

the binary cases, and as with the multinomial LPM, m − 1 equations must

be estimated where there are m possible outcomes or choices. The outcome

for which an equation is not estimated then becomes the reference choice,

and thus the parameter estimates must be interpreted slightly differently.

Suppose that travel by bus (B) or by car (C) have utilities for person i that

depend on the characteristics described above (Ii , Hi , G i , Di ), then the car

will be chosen if

(β1 + β2 Ii + β3 Hi + β4G i + β5 Di + vi )

> (α1 + α2 Ii + α3 Hi + α4G i + α5 Di + ui ) (11.13)

That is, the probability that the car will be chosen will be greater than

that of the bus being chosen if the utility from going by car is greater.

7 We are assuming that the choices are exhaustive and mutually exclusive -- that is, one

and only one method of transport can be chosen!
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Equation (11.13) can be rewritten as

(β1 − α1) + (β2 − α2) Ii + (β3 − α3) Hi

+ (β4 − α4) G i + (β5 − α5) Di > (ui − vi ) (11.14)

If it is assumed that ui and vi independently follow a particular

distribution,8 then the difference between them will follow a logistic dis-

tribution. Thus we can write

P(Ci/Bi ) =
1

1 + e−zi
(11.15)

where zi is the function on the left hand side of (11.14), i.e. (β1 − α1) +
(β2 − α2) Ii + · · · and travel by bus becomes the reference category.

P(Ci/Bi ) denotes the probability that individual i would choose to travel

by car rather than by bus.

Equation (11.15) implies that the probability of the car being chosen in

preference to the bus depends upon the logistic function of the differences

in the parameters describing the relationship between the utilities from

travelling by each mode of transport. Of course, we cannot recover both

β2 and α2 for example, but only the difference between them (call this

γ2 = β2 − α2). These parameters measure the impact of marginal changes

in the explanatory variables on the probability of travelling by car relative

to the probability of travelling by bus. Note that a unit increase in Ii will

lead to a γ2 F (Ii ) increase in the probability and not a γ2 increase -- see

equations (11.5) and (11.6) above. For this trinomial problem, there would

need to be another equation -- for example, based on the difference in

utilities between travelling by bike and by bus. These two equations would

be estimated simultaneously using maximum likelihood.

For the multinomial logit model, the error terms in the equations (ui

and vi in the example above) must be assumed to be independent. How-

ever, this creates a problem whenever two or more of the choices are very

similar to one another. This problem is known as the ‘independence of ir-

relevant alternatives’. To illustrate how this works, Kennedy (2003, p. 270)

uses an example where another choice to travel by bus is introduced and

the only thing that differs is the colour of the bus. Suppose that the origi-

nal probabilities for the car, bus and bicycle were 0.4, 0.3 and 0.3. If a new

green bus were introduced in addition to the existing red bus, we would

expect that the overall probability of travelling by bus should stay at 0.3

and that bus passengers should split between the two (say, with half using

each coloured bus). This result arises since the new colour of the bus is

8 In fact, they must follow independent log Weibull distributions.
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irrelevant to those who have already chosen to travel by car or bicycle.

Unfortunately, the logit model will not be able to capture this and will

seek to preserve the relative probabilities of the old choices (which could

be expressed as 4
10

, 3
10

and 3
10

respectively). These will become 4
13

, 3
13

, 3
13

and
3

13
for car, green bus, red bus and bicycle respectively -- a long way from

what intuition would lead us to expect.

Fortunately, the multinomial probit model, which is the multiple choice

generalisation of the probit model discussed in section 11.5 above, can

handle this. The multinomial probit model would be set up in exactly the

same fashion as the multinomial logit model, except that the cumulative

normal distribution is used for (ui − vi ) instead of a cumulative logistic

distribution. This is based on an assumption that ui and vi are multivariate

normally distributed but unlike the logit model, they can be correlated.

A positive correlation between the error terms can be employed to reflect

a similarity in the characteristics of two or more choices. However, such

a correlation between the error terms makes estimation of the multi-

nomial probit model using maximum likelihood difficult because multi-

ple integrals must be evaluated. Kennedy (2003, p. 271) suggests that this

has resulted in continued use of the multinomial logit approach despite

the independence of irrelevant alternatives problem.

11.10 The pecking order hypothesis revisited – the choice between
financing methods

In section 11.4, a logit model was used to evaluate whether there was

empirical support for the pecking order hypothesis where the hypothesis

boiled down to a consideration of the probability that a firm would seek

external financing or not. But suppose that we wish to examine not only

whether a firm decides to issue external funds but also which method of

funding it chooses when there are a number of alternatives available. As

discussed above, the pecking order hypothesis suggests that the least costly

methods, which, everything else equal, will arise where there is least in-

formation asymmetry, will be used first, and the method used will also de-

pend on the riskiness of the firm. Returning to Helwege and Liang’s study,

they argue that if the pecking order is followed, low-risk firms will issue

public debt first, while moderately risky firms will issue private debt and

the most risky companies will issue equity. Since there is more than one

possible choice, this is a multiple choice problem and consequently, a bi-

nary logit model is inappropriate and instead, a multinomial logit is used.

There are three possible choices here: bond issue, equity issue and private
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debt issue. As is always the case for multinomial models, we estimate

equations for one fewer than the number of possibilities, and so equa-

tions are estimated for equities and bonds, but not for private debt. This

choice then becomes the reference point, so that the coefficients measure

the probability of issuing equity or bonds rather than private debt, and a

positive parameter estimate in, say, the equities equation implies that an

increase in the value of the variable leads to an increase in the probability

that the firm will choose to issue equity rather than private debt.

The set of explanatory variables is slightly different now given the dif-

ferent nature of the problem at hand. The key variable measuring risk is

now the ‘unlevered Z score’, which is Altman’s Z score constructed as a

weighted average of operating earnings before interest and taxes, sales, re-

tained earnings and working capital. All other variable names are largely

self-explanatory and so are not discussed in detail, but they are divided

into two categories -- those measuring the firm’s level of risk (unlevered

Z -score, debt, interest expense and variance of earnings) and those mea-

suring the degree of information asymmetry (R&D expenditure, venture-

backed, age, age over 50, plant property and equipment, industry growth,

non-financial equity issuance, and assets). Firms with heavy R&D expendi-

ture, those receiving venture capital financing, younger firms, firms with

less property, plant and equipment, and smaller firms are argued to suf-

fer from greater information asymmetry. The parameter estimates for the

multinomial logit are presented in table 11.2, with equity issuance as a

(0,1) dependent variable in the second column and bond issuance as

a (0,1) dependent variable in the third column.

Overall, the results paint a very mixed picture about whether the peck-

ing order hypothesis is validated or not. The positive (significant) and

negative (insignificant) estimates on the unlevered Z -score and interest

expense variables respectively suggest that firms in good financial health

(i.e. less risky firms) are more likely to issue equities or bonds rather than

private debt. Yet the positive sign of the parameter on the debt variable

is suggestive that riskier firms are more likely to issue equities or bonds;

the variance of earnings variable has the wrong sign but is not statisti-

cally significant. Almost all of the asymmetric information variables have

statistically insignificant parameters. The only exceptions are that firms

having venture backing are more likely to seek capital market financing

of either type, as are non-financial firms. Finally, larger firms are more

likely to issue bonds (but not equity). Thus the authors conclude that the

results ‘do not indicate that firms strongly avoid external financing as

the pecking order predicts’ and ‘equity is not the least desirable source

of financing since it appears to dominate bank loans’ (Helwege and Liang

(1996), p. 458).
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Table 11.2 Multinomial logit estimation of the type of external financing

Variable Equity equation Bonds equation

Intercept −4.67 −4.68
(−6.17) (−5.48)

Unlevered Z -score 0.14 0.26
(1.84) (2.86)

Debt 1.72 3.28
(1.60) (2.88)

Interest expense −9.41 −4.54
(−0.93) (−0.42)

Variance of earnings −0.04 −0.14
(−0.55) (−1.56)

R&D 0.61 0.89
(1.28) (1.59)

Venture-backed 0.70 0.86
(2.32) (2.50)

Age −0.01 −0.03
(−1.10) (−1.85)

Age over 50 1.58 1.93
(1.44) (1.70)

Plant, property and equipment (0.62) 0.34
(0.94) (0.50)

Industry growth 0.005 0.003
(1.14) (0.70)

Non-financial equity issuance 0.008 0.005
(3.89) (2.65)

Assets −0.001 0.002
(−0.59) (4.11)

Notes: t-ratios in parentheses; only figures for all years in the sample are

presented.

Source: Helwege and Liang (1996). Reprinted with the permission of Elsevier

Science.

11.11 Ordered response linear dependent variables models

Some limited dependent variables can be assigned numerical values that

have a natural ordering. The most common example in finance is that of

credit ratings, as discussed previously, but a further application is to mod-

elling a security’s bid--ask spread (see, for example, ap Gwilym et al., 1998).

In such cases, it would not be appropriate to use multinomial logit or pro-

bit since these techniques cannot take into account any ordering in the
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dependent variables. Notice that ordinal variables are still distinct from

the usual type of data that were employed in the early chapters in this

book, such as stock returns, GDP, interest rates, etc. These are examples

of cardinal numbers, since additional information can be inferred from

their actual values relative to one another. To illustrate, an increase in

house prices of 20% represents twice as much growth as a 10% rise. The

same is not true of ordinal numbers, where (returning to the credit rat-

ings example) a rating of AAA, assigned a numerical score of 16, is not

‘twice as good’ as a rating of Baa2/BBB, assigned a numerical score of 8.

Similarly, for ordinal data, the difference between a score of, say, 15 and

of 16 cannot be assumed to be equivalent to the difference between the

scores of 8 and 9. All we can say is that as the score increases, there is

a monotonic increase in the credit quality. Since only the ordering can

be interpreted with such data and not the actual numerical values, OLS

cannot be employed and a technique based on ML is used instead. The

models used are generalisations of logit and probit, known as ordered logit

and ordered probit.

Using the credit rating example again, the model is set up so that a

particular bond falls in the AA+ category (using Standard and Poor’s ter-

minology) if its unobserved (latent) creditworthiness falls within a certain

range that is too low to classify it as AAA and too high to classify it as

AA. The boundary values between each rating are then estimated along

with the model parameters.

11.12 Are unsolicited credit ratings biased downwards?
An ordered probit analysis

Modelling the determinants of credit ratings is one of the most important

uses of ordered probit and logit models in finance. The main credit ratings

agencies construct what may be termed solicited ratings, which are those

where the issuer of the debt contacts the agency and pays them a fee for

producing the rating. Many firms globally do not seek a rating (because, for

example, the firm believes that the ratings agencies are not well placed to

evaluate the riskiness of debt in their country or because they do not plan

to issue any debt or because they believe that they would be awarded a low

rating), but the agency may produce a rating anyway. Such ‘unwarranted

and unwelcome’ ratings are known as unsolicited ratings. All of the major

ratings agencies produce unsolicited ratings as well as solicited ones, and

they argue that there is a market demand for this information even if the

issuer would prefer not to be rated.
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Companies in receipt of unsolicited ratings argue that these are biased

downwards relative to solicited ratings and that they cannot be justified

without the level of detail of information that can be provided only by the

rated company itself. A study by Poon (2003) seeks to test the conjecture

that unsolicited ratings are biased after controlling for the rated com-

pany’s characteristics that pertain to its risk.

The data employed comprise a pooled sample of all companies that ap-

peared on the annual ‘issuer list’ of S&P during the years 1998--2000. This

list contains both solicited and unsolicited ratings covering 295 firms over

15 countries and totalling 595 observations. In a preliminary exploratory

analysis of the data, Poon finds that around half of the sample ratings were

unsolicited, and indeed the unsolicited ratings in the sample are on aver-

age significantly lower than the solicited ratings.9 As expected, the finan-

cial characteristics of the firms with unsolicited ratings are significantly

weaker than those for firms that requested ratings. The core methodology

employs an ordered probit model with explanatory variables comprising

firm characteristics and a dummy variable for whether the firm’s credit

rating was solicited or not

R∗
i = X iβ + ǫi (11.16)

with

Ri =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if R∗
i ≤ μ0

2 if μ0 < R∗
i ≤ μ1

3 if μ1 < R∗
i ≤ μ2

4 if μ2 < R∗
i ≤ μ3

5 if R∗
i > μ3

where Ri are the observed ratings scores that are given numerical values

as follows: AA or above = 6, A = 5, BBB = 4, BB = 3, B = 2 and CCC or

below = 1; R∗
i is the unobservable ‘true rating’ (or ‘an unobserved con-

tinuous variable representing S&P’s assessment of the creditworthiness of

issuer i ’), X i is a vector of variables that explains the variation in ratings;

β is a vector of coefficients; μi are the threshold parameters to be esti-

mated along with β; and ǫi is a disturbance term that is assumed normally

distributed.

The explanatory variables attempt to capture the creditworthiness us-

ing publicly available information. Two specifications are estimated: the

first includes the variables listed below, while the second additionally

9 We are assuming here that the broader credit rating categories, of which there are 6,

(AAA, AA, A, BBB, BB, B) are being used rather than the finer categories used by Cantor

and Packer (1996).
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incorporates an interaction of the main financial variables with a dummy

variable for whether the firm’s rating was solicited (SOL) and separately

with a dummy for whether the firm is based in Japan.10 The financial

variables are ICOV -- interest coverage (i.e. earnings interest), ROA -- re-

turn on assets, DTC -- total debt to capital, and SDTD -- short-term debt

to total debt. Three variables -- SOVAA, SOVA and SOVBBB -- are dummy

variables that capture the debt issuer’s sovereign credit rating.11 Table 11.3

presents the results from the ordered probit estimation.

The key finding is that the SOL variable is positive and statistically signif-

icant in Model 1 (and it is positive but insignificant in Model 2), indicating

that even after accounting for the financial characteristics of the firms,

unsolicited firms receive ratings on average 0.359 units lower than an

otherwise identical firm that had requested a rating. The parameter es-

timate for the interaction term between the solicitation and Japanese

dummies (SOL∗JP) is positive and significant in both specifications, indi-

cating strong evidence that Japanese firms soliciting ratings receive higher

scores. On average, firms with stronger financial characteristics (higher in-

terest coverage, higher return on assets, lower debt to total capital, or a

lower ratio of short-term debt to long-term debt) have higher ratings.

A major flaw that potentially exists within the above analysis is the

self-selection bias or sample selection bias that may have arisen if firms that

would have received lower credit ratings (because they have weak finan-

cials) elect not to solicit a rating. If the probit equation for the deter-

minants of ratings is estimated ignoring this potential problem and it

exists, the coefficients will be inconsistent. To get around this problem

and to control for the sample selection bias, Heckman (1979) proposed a

two-step procedure that in this case would involve first estimating a 0--1

probit model for whether the firm chooses to solicit a rating and second

estimating the ordered probit model for the determinants of the rating.

The first-stage probit model is

Y ∗
i = Z iγ + ξi (11.17)

where Yi = 1 if the firm has solicited a rating and 0 otherwise, and Y ∗
i

denotes the latent propensity of issuer i to solicit a rating, Z i are the

10 The Japanese dummy is used since a disproportionate number of firms in the sample

are from this country.
11 So SOVAA = 1 if the sovereign (i.e. the government of that country) has debt with a

rating of AA or above and 0 otherwise; SOVA has a value 1 if the sovereign has a rating

of A; and SOVBBB has a value 1 if the sovereign has a rating of BBB; any firm in a

country with a sovereign whose rating is below BBB is assigned a zero value for all

three sovereign rating dummies.
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Table 11.3 Ordered probit model results for the determinants of credit ratings

Model 1 Model 2
Explanatory

variables Coefficient Test statistic Coefficient Test statistic

Intercept 2.324 8.960∗∗∗ 1.492 3.155∗∗∗

SOL 0.359 2.105∗∗ 0.391 0.647
JP −0.548 −2.949∗∗∗ 1.296 2.441∗∗

JP∗SOL 1.614 7.027∗∗∗ 1.487 5.183∗∗∗

SOVAA 2.135 8.768∗∗∗ 2.470 8.975∗∗∗

SOVA 0.554 2.552∗∗ 0.925 3.968∗∗∗

SOVBBB −0.416 −1.480 −0.181 −0.601
ICOV 0.023 3.466∗∗∗ −0.005 −0.172
ROA 0.104 10.306∗∗∗ 0.194 2.503∗∗

DTC −1.393 −5.736∗∗∗ −0.522 −1.130
SDTD −1.212 −5.228∗∗∗ 0.111 0.171
SOL∗ICOV -- -- 0.005 0.163
SOL∗ROA -- -- −0.116 −1.476
SOL∗DTC -- -- 0.756 1.136
SOL∗SDTD -- -- −0.887 −1.290
JP∗ICOV -- -- 0.009 0.275
JP∗ROA -- -- 0.183 2.200∗∗

JP∗DTC -- -- −1.865 −3.214∗∗∗

JP∗SDTD -- -- −2.443 −3.437∗∗∗

AA or above >5.095 >5.578
A >3.788 and ≤5.095 25.278∗∗∗ >4.147 and ≤5.578 23.294∗∗∗

BBB >2.550 and ≤3.788 19.671∗∗∗ >2.803 and ≤4.147 19.204∗∗∗

BB >1.287 and ≤2.550 14.342∗∗∗ >1.432 and ≤2.803 14.324∗∗∗

B >0 and ≤1.287 7.927∗∗∗ >0 and ≤1.432 7.910∗∗∗

CCC or below ≤0 ≤0

Note: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels respectively.

Source: Poon (2003). Reprinted with the permission of Elsevier Science.

variables that explain the choice to be rated or not, and γ are the param-

eters to be estimated. When this equation has been estimated, the rating

Ri as defined above in equation (11.16) will be observed only if Yi = 1.

The error terms from the two equations, ǫi and ξi , follow a bivariate stan-

dard normal distribution with correlation ρǫξ . Table 11.4 shows the results

from the two-step estimation procedure, with the estimates from the bi-

nary probit model for the decision concerning whether to solicit a rating

in panel A and the determinants of ratings for rated firms in panel B.

A positive parameter value in panel A indicates that higher values of

the associated variable increases the probability that a firm will elect to
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Table 11.4 Two-step ordered probit model allowing for selectivity bias in the

determinants of credit ratings

Explanatory variable Coefficient Test statistic

Panel A: Decision to be rated

Intercept 1.624 3.935∗∗∗

JP −0.776 −4.951∗∗∗

SOVAA −0.959 −2.706∗∗∗

SOVA −0.614 −1.794∗

SOVBBB −1.130 −2.899∗∗∗

ICOV −0.005 −0.922
ROA 0.051 6.537∗∗∗

DTC 0.272 1.019
SDTD −1.651 −5.320∗∗∗

Panel B: Rating determinant equation

Intercept 1.368 2.890∗∗∗

JP 2.456 3.141∗∗∗

SOVAA 2.315 6.121∗∗∗

SOVA 0.875 2.755∗∗∗

SOVBBB 0.306 0.768
ICOV 0.002 0.118
ROA 0.038 2.408∗∗

DTC −0.330 −0.512
SDTD 0.105 0.303
JP∗ICOV 0.038 1.129
JP∗ROA 0.188 2.104∗∗

JP∗DTC −0.808 −0.924
JP∗SDTD −2.823 −2.430∗∗

Estimated correlation −0.836 −5.723∗∗∗

AA or above >4.275
A >2.841 and ≤4.275 8.235∗∗∗

BBB >1.748 and ≤2.841 9.164∗∗∗

BB >0.704 and ≤1.748 6.788∗∗∗

B >0 and ≤0.704 3.316∗∗∗

CCC or below ≤0

Note: ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1% levels respectively.

Source: Poon (2003). Reprinted with the permission of Elsevier Science.

be rated. Of the four financial variables, only the return on assets and the

short-term debt as a proportion of total debt have correctly signed and

significant (positive and negative respectively) impacts on the decision to

be rated. The parameters on the sovereign credit rating dummy variables

(SOVAA, SOVA and SOVB) are all significant and negative in sign, indicating
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that any debt issuer in a country with a high sovereign rating is less likely

to solicit its own rating from S&P, other things equal.

These sovereign rating dummy variables have the opposite sign in the

ratings determinant equation (panel B) as expected, so that firms in coun-

tries where government debt is highly rated are themselves more likely

to receive a higher rating. Of the four financial variables, only ROA has

a significant (and positive) effect on the rating awarded. The dummy for

Japanese firms is also positive and significant, and so are three of the

four financial variables when interacted with the Japan dummy, indicat-

ing that S&P appears to attach different weights to the financial variables

when assigning ratings to Japanese firms compared with comparable firms

in other countries.

Finally, the estimated correlation between the error terms in the deci-

sion to be rated equation and the ratings determinant equation, ρǫξ , is

significant and negative (−0.836), indicating that the results in table 11.3

above would have been subject to self-selection bias and hence the results

of the two-stage model are to be preferred. The only disadvantage of this

approach, however, is that by construction it cannot answer the core ques-

tion of whether unsolicited ratings are on average lower after allowing for

the debt issuer’s financial characteristics, because only firms with solicited

ratings are included in the sample at the second stage!

11.13 Censored and truncated dependent variables

Censored or truncated variables occur when the range of values observable

for the dependent variables is limited for some reason. Unlike the types of

limited dependent variables examined so far in this chapter, censored or

truncated variables may not necessarily be dummies. A standard example

is that of charitable donations by individuals. It is likely that some people

would actually prefer to make negative donations (that is, to receive from

the charity rather than to donate to it), but since this is not possible,

there will be many observations at exactly zero. So suppose, for example,

that we wished to model the relationship between donations to charity

and people’s annual income, in pounds. The situation we might face is

illustrated in figure 11.3.

Given the observed data, with many observations on the dependent

variable stuck at zero, OLS would yield biased and inconsistent parameter

estimates. An obvious but flawed way to get around this would be just

to remove all of the zero observations altogether, since we do not know

whether they should be truly zero or negative. However, as well as being
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Figure 11.3

Modelling charitable

donations as a

function of income

inefficient (since information would be discarded), this would still yield

biased and inconsistent estimates. This arises because the error term, ui ,

in such a regression would not have an expected value of zero, and it

would also be correlated with the explanatory variable(s), violating the

assumption that Cov (ui , xki ) = 0 ∀k.

The key differences between censored and truncated data are high-

lighted in box 11.2. For both censored and truncated data, OLS will not

be appropriate, and an approach based on maximum likelihood must be

used, although the model in each case would be slightly different. In

both cases, we can work out the marginal effects given the estimated pa-

rameters, but these are now more complex than in the logit or probit

cases.

11.13.1 Censored dependent variable models

The approach usually used to estimate models with censored dependent

variables is known as tobit analysis, named after Tobin (1958). To illustrate,

suppose that we wanted to model the demand for privatisation IPO shares,

as discussed above, as a function of income (x2i ), age (x3i ), education (x4i )

and region of residence (x5i ). The model would be

y∗
i = β1 + β2x2i + β3x3i + β4x4i + β5x5i + ui

yi = y∗
i for y∗

i < 250 (11.18)

yi = 250 for y∗
i ≥ 250
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Box 11.2 The differences between censored and truncated dependent variables

Although at first sight the two words might appear interchangeable, when the terms are

used in econometrics, censored and truncated data are different.

● Censored data occur when the dependent variable has been ‘censored’ at a certain

point so that values above (or below) this cannot be observed. Even though the

dependent variable is censored, the corresponding values of the independent

variables are still observable.

● As an example, suppose that a privatisation IPO is heavily oversubscribed, and you

were trying to model the demand for the shares using household income, age,

education and region of residence as explanatory variables. The number of shares

allocated to each investor may have been capped at, say, 250, resulting in a

truncated distribution.

● In this example, even though we are likely to have many share allocations at 250

and none above this figure, all of the observations on the independent variables are

present and hence the dependent variable is censored, not truncated.

● A truncated dependent variable, meanwhile, occurs when the observations for both

the dependent and the independent variables are missing when the dependent

variable is above (or below) a certain threshold. Thus the key difference from

censored data is that we cannot observe the xi s either, and so some observations

are completely cut out or truncated from the sample. For example, suppose that a

bank were interested in determining the factors (such as age, occupation and

income) that affected a customer’s decision as to whether to undertake a

transaction in a branch or online. Suppose also that the bank tried to achieve this by

encouraging clients to fill in an online questionnaire when they log on. There would

be no data at all for those who opted to transact in person since they probably

would not have even logged on to the bank’s web-based system and so would not

have the opportunity to complete the questionnaire. Thus, dealing with truncated

data is really a sample selection problem because the sample of data that can be

observed is not representative of the population of interest – the sample is biased,

very likely resulting in biased and inconsistent parameter estimates. This is a

common problem, which will result whenever data for buyers or users only can be

observed while data for non-buyers or non-users cannot. Of course, it is possible,

although unlikely, that the population of interest is focused only on those who use

the internet for banking transactions, in which case there would be no problem.

y∗
i represents the true demand for shares (i.e. the number of shares re-

quested) and this will be observable only for demand less than 250. It

is important to note in this model that β2, β3, etc. represent the impact

on the number of shares demanded (of a unit change in x2i , x3i , etc.)

and not the impact on the actual number of shares that will be bought

(allocated).

An interesting financial application of the tobit approach is due to

Haushalter (2000), who employs it to model the determinants of the ex-

tent of hedging by oil and gas producers using futures or options over the
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1992--1994 period. The dependent variable used in the regression models,

the proportion of production hedged, is clearly censored because around

half of all of the observations are exactly zero (i.e. the firm does not hedge

at all).12 The censoring of the proportion of production hedged may arise

because of high fixed costs that prevent many firms from being able to

hedge even if they wished to. Moreover, if companies expect the price of

oil or gas to rise in the future, they may wish to increase rather than

reduce their exposure to price changes (i.e. ‘negative hedging’), but this

would not be observable given the way that the data are constructed in

the study.

The main results from the study are that the proportion of exposure

hedged is negatively related to creditworthiness, positively related to in-

debtedness, to the firm’s marginal tax rate, and to the location of the

firm’s production facility. The extent of hedging is not, however, affected

by the size of the firm as measured by its total assets.

Before moving on, two important limitations of tobit modelling should

be noted. First, such models are much more seriously affected by non-

normality and heteroscedasticity than are standard regression models (see

Amemiya, 1984), and biased and inconsistent estimation will result. Sec-

ond, as Kennedy (2003, p. 283) argues, the tobit model requires it to be

plausible that the dependent variable can have values close to the limit.

There is no problem with the privatisation IPO example discussed above

since the demand could be for 249 shares. However, it would not be appro-

priate to use the tobit model in situations where this is not the case, such

as the number of shares issued by each firm in a particular month. For

most companies, this figure will be exactly zero, but for those where it is

not, the number will be much higher and thus it would not be feasible to

issue, say, 1 or 3 or 15 shares. In this case, an alternative approach should

be used.

11.13.2 Truncated dependent variable models

For truncated data, a more general model is employed that contains two

equations -- one for whether a particular data point will fall into the

observed or constrained categories and another for modelling the result-

ing variable. The second equation is equivalent to the tobit approach. This

two-equation methodology allows for a different set of factors to affect the

sample selection (for example, the decision to set up internet access to a

12 Note that this is an example of a censored rather than a truncated dependent variable

because the values of all of the explanatory variables are still available from the annual

accounts even if a firm does not hedge at all.
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bank account) from the equation to be estimated (for example, to model

the factors that affect whether a particular transaction will be conducted

online or in a branch). If it is thought that the two sets of factors will

be the same, then a single equation can be used and the tobit approach

is sufficient. In many cases, however, the researcher may believe that the

variables in the sample selection and estimation equations should be dif-

ferent. Thus the equations could be

a∗
i = α1 + α2z2i + α3z3i + · · · + αm zmi + εi (11.19)

y∗
i = β1 + β2x2i + β3x3i + · · · + βk xki + ui (11.20)

where yi = y∗
i for a∗

i > 0 and, yi is unobserved for a∗
i ≤ 0. a∗

i denotes the

relative ‘advantage’ of being in the observed sample relative to the unob-

served sample.

The first equation determines whether the particular data point i will

be observed or not, by regressing a proxy for the latent (unobserved) vari-

able a∗
i on a set of factors, zi . The second equation is similar to the tobit

model. Ideally, the two equations (11.19) and (11.20) will be fitted jointly

by maximum likelihood. This is usually based on the assumption that the

error terms, εi and ui , are multivariate normally distributed and allowing

for any possible correlations between them. However, while joint estima-

tion of the equations is more efficient, it is computationally more complex

and hence a two-stage procedure popularised by Heckman (1976) is often

used. The Heckman procedure allows for possible correlations between εi

and ui while estimating the equations separately in a clever way -- see

Maddala (1983).

11.14 Limited dependent variable models in EViews

Estimating limited dependent variable models in EViews is very simple.

The example that will be considered here concerns whether it is possible

to determine the factors that affect the likelihood that a student will fail

his/her MSc. The data comprise a sample from the actual records of failure

rates for five years of MSc students in finance at the ICMA Centre, Uni-

versity of Reading contained in the spreadsheet ‘MSc fail.xls’. While the

values in the spreadsheet are all genuine, only a sample of 100 students

is included for each of five years who completed (or not as the case may

be!) their degrees in the years 2003 to 2007 inclusive. Therefore, the data

should not be used to infer actual failure rates on these programmes. The

idea for this example is taken from a study by Heslop and Varotto (2007)
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which seeks to propose an approach to preventing systematic biases in

admissions decisions.13

The objective here is to analyse the factors that affect the probability

of failure of the MSc. The dependent variable (‘fail’) is binary and takes

the value 1 if that particular candidate failed at first attempt in terms of

his/her overall grade and 0 elsewhere. Therefore, a model that is suitable

for limited dependent variables is required, such as a logit or probit.

The other information in the spreadsheet that will be used includes the

age of the student, a dummy variable taking the value 1 if the student

is female, a dummy variable taking the value 1 if the student has work

experience, a dummy variable taking the value 1 if the student’s first

language is English, a country code variable that takes values from 1

to 10,14 a dummy variable that takes the value 1 if the student already

has a postgraduate degree, a dummy variable that takes the value 1 if

the student achieved an A-grade at the undergraduate level (i.e. a first-

class honours degree or equivalent), and a dummy variable that takes

the value 1 if the undergraduate grade was less than a B-grade (i.e. the

student received the equivalent of a lower second-class degree). The B-

grade (or upper second-class degree) is the omitted dummy variable and

this will then become the reference point against which the other grades

are compared -- see chapter 9. The reason why these variables ought to be

useful predictors of the probability of failure should be fairly obvious and

is therefore not discussed. To allow for differences in examination rules

and in average student quality across the five-year period, year dummies

for 2004, 2005, 2006 and 2007 are created and thus the year 2003 dummy

will be omitted from the regression model.

First, open a new workfile that can accept ‘unstructured/undated’ se-

ries of length 500 observations and then import the 13 variables. The data

are organised by observation and start in cell A2. The country code vari-

able will require further processing before it can be used but the others

are already in the appropriate format, so to begin, suppose that we esti-

mate a linear probability model (LPM) of fail on a constant, age, English,

female and work experience. This would be achieved simply by running a

linear regression in the usual way. While this model has a number of very

undesirable features as discussed above, it would nonetheless provide a

13 Note that since this book uses only a sub-set of their sample and variables in the

analysis, the results presented below may differ from theirs. Since the number of fails

is relatively small, I deliberately retained as many fail observations in the sample as

possible, which will bias the estimated failure rate upwards relative to the true rate.
14 The exact identities of the countries involved are not revealed in order to avoid any

embarrassment for students from countries with high relative failure rates, except that

Country 8 is the UK!



Limited dependent variable models 539

useful benchmark with which to compare the more appropriate models

estimated below.

Next, estimate a probit model and a logit model using the same de-

pendent and independent variables as above. Choose Quick and then

Equation Estimation. Then type the dependent variable followed by the

explanatory variables

FAIL C AGE ENGLISH FEMALE WORK EXPERIENCE AGRADE BELOWB-

GRADE PG DEGREE YEAR2004 YEAR2005 YEAR2006 YEAR2007

and then in the second window, marked ‘Estimation settings’, select

BINARY – Binary Choice (Logit, Probit, Extreme Value) with the whole

sample 1 500. The screen will appear as in screenshot 11.1.

Screenshot 11.1

‘Equation

Estimation’ window

for limited

dependent variables

You can then choose either the probit or logit approach. Note that

EViews also provides support for truncated and censored variable mod-

els and for multiple choice models, and these can be selected from the

drop-down menu by choosing the appropriate method under ‘estimation

settings’. Suppose that here we wish to choose a probit model (the de-

fault). Click on the Options tab at the top of the window and this en-

ables you to select Robust Covariances and Huber/White. This option will
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ensure that the standard error estimates are robust to heteroscedasticity

(see screenshot 11.2).

There are other options to change the optimisation method and con-

vergence criterion, as discussed in chapter 8. We do not need to make

any modifications from the default here, so click OK and the results will

appear. Freeze and name this table and then, for completeness, estimate

a logit model. The results that you should obtain for the probit model

are as follows:

Dependent Variable: FAIL
Method: ML -- Binary Probit (Quadratic hill climbing)
Date: 08/04/07 Time: 19:10
Sample: 1 500
Included observations: 500
Convergence achieved after 5 iterations
QML (Huber/White) standard errors & covariance

Coefficient Std. Error z-Statistic Prob.

C −1.287210 0.609503 −2.111901 0.0347
AGE 0.005677 0.022559 0.251648 0.8013

ENGLISH −0.093792 0.156226 −0.600362 0.5483
FEMALE −0.194107 0.186201 −1.042460 0.2972

WORK EXPERIENCE −0.318247 0.151333 −2.102956 0.0355
AGRADE −0.538814 0.231148 −2.331038 0.0198

BELOWBGRADE 0.341803 0.219301 1.558601 0.1191
PG DEGREE 0.132957 0.225925 0.588502 0.5562
YEAR2004 0.349663 0.241450 1.448181 0.1476
YEAR2005 −0.108330 0.268527 −0.403422 0.6866
YEAR2006 0.673612 0.238536 2.823944 0.0047
YEAR2007 0.433785 0.24793 1.749630 0.0802

McFadden R-squared 0.088870 Mean dependent var 0.134000
S.D. dependent var 0.340993 S.E. of regression 0.333221
Akaike info criterion 0.765825 Sum squared resid 54.18582
Schwarz criterion 0.866976 Log likelihood −179.4563
Hannan-Quinn criter. 0.805517 Restr. log likelihood −196.9602
LR statistic 35.00773 Avg. log likelihood −0.358913
Prob(LR statistic) 0.000247

Obs with Dep=0 433 Total obs 500
Obs with Dep=1 67

As can be seen, the pseudo-R2 values are quite small at just below 9%,

although this is often the case for limited dependent variable models.

Only the work experience and A-grade variables and two of the year
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Screenshot 11.2

‘Equation

Estimation’ options

for limited

dependent variables

dummies have parameters that are statistically significant, and the Below

B-grade dummy is almost significant at the 10% level in the probit speci-

fication (although less so in the logit). As the final two rows of the tables

note, the proportion of fails in this sample is quite small, which makes

it harder to fit a good model than if the proportions of passes and fails

had been more evenly balanced. Various goodness of fit statistics can be

examined by (from the logit or probit estimation output window) click-

ing View/Goodness-of-fit Test. . . . A further check on model adequacy is

to produce a set of ‘in-sample forecasts’ -- in other words, to construct

the fitted values. To do this, click on the Forecast tab after estimating

the probit model and then uncheck the forecast evaluation box in the

‘Output’ window as the evaluation is not relevant in this case. All other

options can be left as the default settings and then the plot of the fitted

values shown on figure 11.4 results.

The unconditional probability of failure for the sample of students we

have is only 13.4% (i.e. only 67 out of 500 failed), so an observation should

be classified as correctly fitted if either yi = 1 and ŷi > 0.134 or yi = 0

and ŷi < 0.134. The easiest way to evaluate the model in EViews is to click

View/Actual,Fitted,Residual Table from the logit or probit output screen.
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Figure 11.4

Fitted values from

the failure probit

regression

Then from this information we can identify that of the 67 students that

failed, the model correctly predicted 46 of them to fail (and it also in-

correctly predicted that 21 would pass). Of the 433 students who passed,

the model incorrectly predicted 155 to fail and correctly predicted the

remaining 278 to pass. Eviews can construct an ‘expectation-prediction

classification table’ automatically by clicking on View/Expectation-

Prediction Table and then entering the unconditional probability of fail-

ure as the cutoff when prompted (0.134). Overall, we could consider this

a reasonable set of (in sample) predictions.

It is important to note that, as discussed above, we cannot interpret the

parameter estimates in the usual way. In order to be able to do this,

we need to calculate the marginal effects. Unfortunately, EViews does

not do this automatically, so the procedure is probably best achieved

in a spreadsheet using the approach described in box 11.1 for the logit

model and analogously for the probit model. If we did this, we would

end up with the statistics displayed in table 11.5, which are interest-

ingly quite similar in value to those obtained from the linear probability

model.

This table presents us with values that can be intuitively interpreted in

terms of how the variables affect the probability of failure. For example,

an age parameter value of 0.0012 implies that an increase in the age of

the student by 1 year would increase the probability of failure by 0.12%,

holding everything else equal, while a female student is around 2.5--3%
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Table 11.5 Marginal effects for logit and probit models for

probability of MSc failure

Parameter logit probit

C −0.2433 −0.1646
AGE 0.0012 0.0007
ENGLISH −0.0178 −0.0120
FEMALE −0.0360 −0.0248
WORK EXPERIENCE −0.0613 −0.0407
AGRADE −0.1170 −0.0689
BELOWBGRADE 0.0606 0.0437
PG DEGREE 0.0229 0.0170
YEAR2004 0.0704 0.0447
YEAR2005 −0.0198 −0.0139
YEAR2006 0.1344 0.0862
YEAR2007 0.0917 0.0555

(depending on the model) less likely than a male student with otherwise

identical characteristics to fail. Having an A-grade (first class) in the bach-

elors degree makes a candidate either 6.89% or 11.7% (depending on the

model) less likely to fail than an otherwise identical student with a B-

grade (upper second-class degree). Finally, since the year 2003 dummy has

been omitted from the equations, this becomes the reference point. So

students were more likely in 2004, 2006 and 2007, but less likely in 2005,

to fail the MSc than in 2003.

Key concepts
The key terms to be able to define and explain from this chapter are
● limited dependent variables ● logit

● probit ● censored variables

● truncated variables ● ordered response

● multinomial logit ● marginal effects

● pseudo-R2

Review questions

1. Explain why the linear probability model is inadequate as a specification

for limited dependent variable estimation.

2. Compare and contrast the probit and logit specifications for binary

choice variables.
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3. (a) Describe the intuition behind the maximum likelihood estimation

technique used for limited dependent variable models.

(b) Why do we need to exercise caution when interpreting the

coefficients of a probit or logit model?

(c) How can we measure whether a logit model that we have estimated

fits the data well or not?

(d) What is the difference, in terms of the model setup, in binary choice

versus multiple choice problems?

4. (a) Explain the difference between a censored variable and a truncated

variable as the terms are used in econometrics.

(b) Give examples from finance (other than those already described in

this book) of situations where you might meet each of the types of

variable described in part (a) of this question.

(c) With reference to your examples in part (b), how would you go about

specifying such models and estimating them?

5. Re-open the ‘fail xls’ spreadsheet for modelling the probability of MSc

failure and do the following:

(a) Take the country code series and construct separate dummy

variables for each country. Re-run the probit and logit regression

above with all of the other variables plus the country dummy

variables. Set up the regression so that the UK becomes the

reference point against which the effect on failure rate in other

countries is measured. Is there evidence that any countries have

significantly higher or lower probabilities of failure than the UK,

holding all other factors in the model constant? In the case of the

logit model, use the approach given in box 11.1 to evaluate the

differences in failure rates between the UK and each other country.

(b) Suppose that a fellow researcher suggests that there may be a

non-linear relationship between the probability of failure and the age

of the student. Estimate a probit model with all of the same

variables as above plus an additional one to test this. Is there

indeed any evidence of such a nonlinear relationship?

Appendix: The maximum likelihood estimator for logit and probit models

Recall that under the logit formulation, the estimate of the probability

that yi = 1 will be given from equation (11.4), which was

Pi =
1

1 + e−(β1
+β2x2i +...+βk xki +ui )

(11A.1)
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Set the error term, ui , to its expected value for simplicity and again, let

zi = β1 + β2x2i + · · · + βk xki , so that we have

Pi =
1

1 + e−zi
(11A.2)

We will also need the probability that yi �= 1 or equivalently the proba-

bility that yi = 0. This will be given by 1 minus the probability in (11A.2).15

Given that we can have actual zeros and ones only for yi rather than prob-

abilities, the likelihood function for each observation yi will be

L i =
(

1

1 + e−zi

)yi

×
(

1

1 + ezi

)(1−yi )

(11A.3)

The likelihood function that we need will be based on the joint

probability for all N observations rather than an individual obser-

vation i . Assuming that each observation on yi is independent, the

joint likelihood will be the product of all N marginal likelihoods. Let

L (θ |x2i , x3i , . . . , xki ; i = 1, N ) denote the likelihood function of the set of

parameters (β1, β2, . . . , βk) given the data. Then the likelihood function

will be given by

L (θ ) =
N

�
i=1

(

1

1 + e−zi

)yi

×
(

1

1 + ezi

)(1−yi )

(11A.4)

As for maximum likelihood estimator of GARCH models, it is compu-

tationally much simpler to maximise an additive function of a set of

variables than a multiplicative function, so long as we can ensure that

the parameters required to achieve this will be the same. We thus take

the natural logarithm of equation (11A.4) and this log-likelihood function

is maximised

LLF = −
N

∑

i=1

[yi ln(1 + e−zi ) + (1 − yi ) ln(1 + ezi )] (11A.5)

Estimation for the probit model will proceed in exactly the same way,

except that the form for the likelihood function in (11A.4) will be slightly

different. It will instead be based on the familiar normal distribution

function described in the appendix to chapter 8.

15 We can use the rule that

1 −
1

1 + e−zi
=

1 + e−zi − 1

1 + e−zi
=

e−zi

1 + e−zi
=

e−zi

1 + 1
ezi

=
e−zi × ezi

1 + ezi
=

1

1 + ezi
.


